Sensor elements and assemblies, piezo Model SPR-2, sensor element Model TPR-2, sensor assembly

WIKA data sheet PE 81.62

Applications

- Applications with limited mounting space
- Design-in solutions

Special features

- Measuring ranges from 0 ... 0.4 to 0 ... 16 bar (gauge and absolute pressure)
- Measuring cell from stainless steel
- High measuring sensitivity
- High stability

Examples for models SPR-2 and TPR-2

Description

Design

The heart of the measuring cell is a silicon chip, which is pressurised via a pressure transmission medium. As pressure transmission medium, a suitable filling liquid for the respective application is used.

A diaphragm and a case from stainless steel make the transducer highly resistant to a wide variety of media.

Individual solutions

The pressure transducers are manufactured on a flexible production line and can be individually adapted to suit customer requirements.

Special features

The pressure transducer can be delivered either with or without linear temperature compensation. Alternatively, a test certificate for the sensor cell can be supplied with it, for active temperature compensation by the customers themselves.

The assembly and connection concept guarantees a very high overload and burst pressure safety.

The silicon chip provides a high measuring sensitivity, which enables measurement of even the lowest pressures.

Measuring ranges

Gauge pressure and absolute pressure (bar)					
0 0.4	0 1	0 1.6	0 2.5	0 4	
0 6	0 10	0 16			

Other measuring ranges on request.

Overload safety

3 times

Burst pressure safety

5 times

Vacuum tightness

Yes

Output signals

Without temperature compensation

12 ... 50 mV/V (depending on measuring range)

With temperature compensation

4.5 ... 23.5 mV/V (depending on measuring range)

Voltage supply

Power supply

Max. DC 10 V

Reference conditions (per IEC 61298-1)

Temperature

15 ... 25 °C [59 ... 77 °F]

Atmospheric pressure

860 ... 1,060 mbar [12.5 ... 15.4 psi]

Air humidity

45 ... 75 % r. h.

Power supply

DC 10 V

Mounting position

As required

Time response

Settling time (10 ... 90 %)

< 1 ms

Accuracy specifications

Zero point offset

Without temperature compensation: $\leq \pm 10 \text{ mV/V}$ With temperature compensation: $\leq \pm 2 \text{ mV/V}$

Bridge resistance

Bridge resistance			
	UB+/0V	S+/S-	
With temperature compensation	8 16.5 kΩ	4 18 kΩ	
Without temperature compensation	4 6.5 kOhm		

Legend

UB+ Positive power supply terminal
0V Negative power supply terminal
0UT+ Positive terminal for analogue output
0UT- Negative terminal for analogue output

Compensated temperature range

Compensated temperature range		
Standard	without temperature compensation	
Option	-20 +85 °C [-4 +185 °F]	

Temperature error

Without temperature compensation		
	Max. temperature coefficient	
Zero point	-1.5 +2.5 % of span/10 K (depending on measuring range)	
Span	-2.41.4 % of span/10 K	

With temperature compensation					
	Measuring range	Max. temperature error			
Zero point	0 0.4 bar	≤ ±2.5 % of span			
	0 1 to 0 2.5 bar	≤ ±1.5 % of span			
	0 4 to 0 25 bar	≤ ±0.75 % of span			
Span	0 0.4 bar	≤±1 % of span			
	0 1 to 0 25 bar	≤ ±0.75 % of span			

Non-linearity (BFSL)

 $\leq \pm 0.3$ % of span

 $\leq \pm 0.4\%$ for 0...0.4 bar version

Hysteresis

≤ ±0.03 % of span

Non-repeatability

 $\leq \pm 0.03$ % of span

Long-term stability

 \leq ±0.2 % of span/year

Operating conditions

Permissible temperature ranges

Valid for standard filling liquid (synthtic oil). Other filling liquids on request.

Service life

> 100 million load cycles

Process connections

On request

Electrical connections

On request

Electrical protective measures

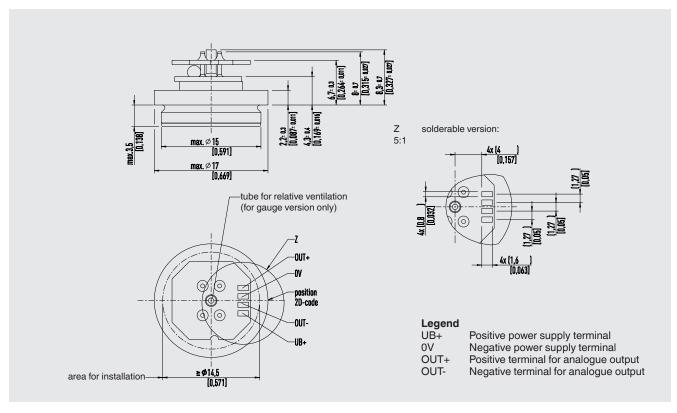
High-voltage strength

DC 500 V

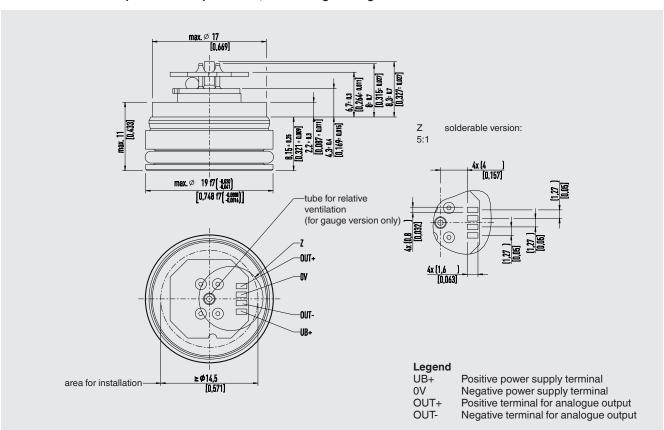
Insulation resistance

> 1 GΩ

Materials

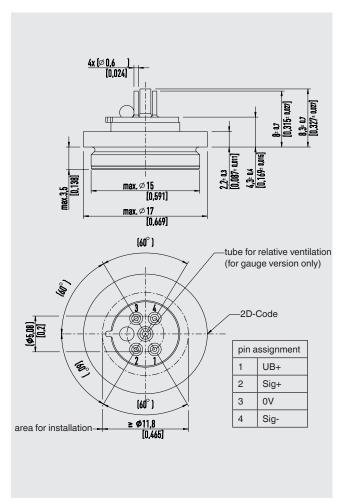

Wetted parts

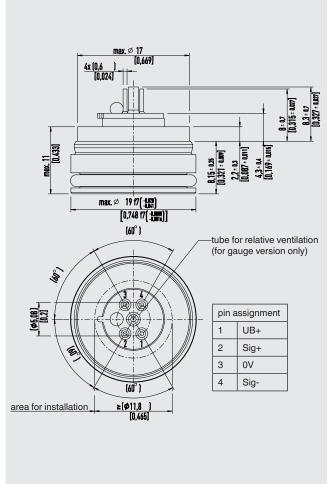
Stainless steel


Other materials on request.

Dimensions in mm

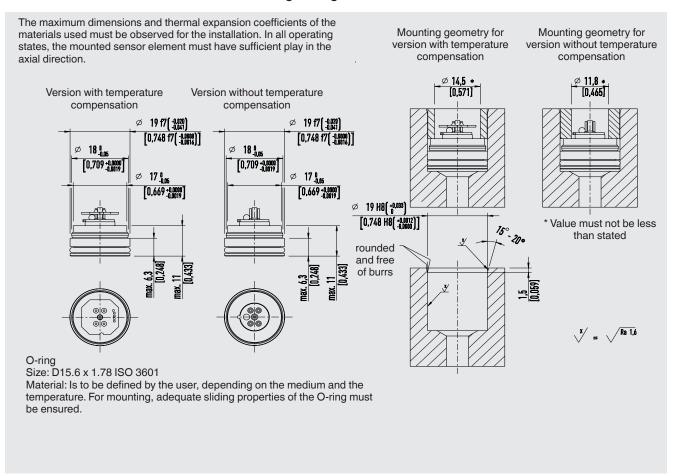
Model SPR-2 with temperature compensation




Model TPR-2 with temperature compensation, with O-ring sealing contour

Model SPR-2 without temperature compensation

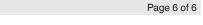
Model TPR-2 without temperature compensation, with O-ring sealing contour



Legend

UB+ Positive power supply terminal
0V Negative power supply terminal
OUT+ Positive terminal for analogue output
OUT- Negative terminal for analogue output

Installation recommendation for TPR-2 with O-ring sealing contour


Ordering information

Measuring range / Temperature compensation / Process connection / Electrical connection

© 08/2015 WIKA Alexander Wiegand SE & Co. KG, all rights reserved.

The specifications given in this document represent the state of engineering at the time of publishing. We reserve the right to make modifications to the specifications and materials.

WIKA data sheet PE 81.62 · 10/2018

info@wika.de www.wika.de